Na+/H+exchanger-1 inhibitors decrease myocardial superoxide production via direct mitochondrial action

Author:

Garciarena Carolina D.,Caldiz Claudia I.,Correa María V.,Schinella Guillermo R.,Mosca Susana M.,Chiappe de Cingolani Gladys E.,Cingolani Horacio E.,Ennis Irene L.

Abstract

The possibility of a direct mitochondrial action of Na+/H+exchanger-1 (NHE-1) inhibitors decreasing reactive oxygen species (ROS) production was assessed in cat myocardium. Angiotensin II and endothelin-1 induced an NADPH oxidase (NOX)-dependent increase in anion superoxide (O2) production detected by chemiluminescence. Three different NHE-1 inhibitors [cariporide, BIIB-723, and EMD-87580] with no ROS scavenger activity prevented this increase. The mitochondria appeared to be the source of the NOX-dependent ROS released by the “ROS-induced ROS release mechanism” that was blunted by the mitochondrial ATP-sensitive potassium channel blockers 5-hydroxydecanoate and glibenclamide, inhibition of complex I of the electron transport chain with rotenone, and inhibition of the permeability transition pore (MPTP) by cyclosporin A. Cariporide also prevented O2production induced by the opening of mKATPwith diazoxide. Ca2+-induced swelling was evaluated in isolated mitochondria as an indicator of MPTP formation. Cariporide decreased mitochondrial swelling to the same extent as cyclosporin A and bongkrekic acid, confirming its direct mitochondrial action. Increased O2production, as expected, stimulated ERK1/2 and p90 ribosomal S6 kinase phosphorylation. This was also prevented by cariporide, giving additional support to the existence of a direct mitochondrial action of NHE-1 inhibitors in preventing ROS release. In conclusion, we report a mitochondrial action of NHE-1 inhibitors that should lead us to revisit or reinterpret previous landmark observations about their beneficial effect in several cardiac diseases, such as ischemia-reperfusion injury and cardiac hypertrophy and failure. Further studies are needed to clarify the precise mechanism and site of action of these drugs in blunting MPTP formation and ROS release.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3