Gene expression during inactivity-induced muscle atrophy: effects of brief bouts of a forceful contraction countermeasure

Author:

Kim Soo J.,Roy Roland R.,Kim Jung A.,Zhong Hui,Haddad Fadia,Baldwin Kenneth M.,Edgerton V. Reggie

Abstract

Anabolic and catabolic markers of muscle protein metabolism were examined in inactivity-induced atrophying muscles with and without daily short-duration, high-resistance isometric contractions. Inactivity was achieved via spinal cord isolation (SI), which results in near inactivity of the hindlimb musculature without compromising the motoneuron-muscle connectivity. Adult rats were assigned to a control (Con) or SI group in which one limb was stimulated (SI-Stim, 5 consecutive days of brief bouts of high-load isometric contractions) while the other served as a SI control (SI). Both the medial gastrocnemius (MG) and soleus weights (relative to body weight) were ∼71% of Con in the SI, but maintained at Con in the SI-Stim group. Activity of the IGF-1/phosphatidylinositol 3-kinase (PI3K)/Akt pathway of protein synthesis was similar among all groups in the MG. Expression of atrogin-1 and muscle RING finger-1 (MuRF-1), markers of protein degradation, were higher in the MG and soleus of the SI than Con and maintained at Con in the SI-Stim. Compared with Con, the anti-growth factor myostatin was unaffected in the MG and soleus in the SI but was lower in the MG of the SI-Stim. These results demonstrate that upregulation of specific protein catabolic pathways plays a critical role in SI-induced atrophy, while this response was blunted by 4 min of daily high-resistance electromechanical stimulation and was able to preserve most of the muscle mass. Although the protein anabolic pathway (IGF-1/PI3K/Akt) appears to play a minor role in regulating mass in the SI model, increased translational capacity may have contributed to mass preservation in response to isometric contractions.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3