Effect of compliance and hematocrit on wall shear stress in a model of the entire coronary arterial tree

Author:

Huo Yunlong,Kassab Ghassan S.

Abstract

A hemodynamic analysis is implemented in the entire coronary arterial tree of diastolically arrested, vasodilated pig heart that takes into account vessel compliance and blood viscosity in each vessel of a large-scale simulation involving millions of vessels. The feed hematocrit (Hct) is varied at the inlet of the coronary arterial tree, and the Fahraeus-Lindqvist effect and phase separation are considered throughout the vasculature. The major findings are as follows: 1) vessel compliance is the major determinant of nonlinearity of the pressure-flow relation, and 2) changes in Hct influence wall shear stress (WSS) in epicardial coronary arteries more significantly than in transmural and perfusion arterioles because of the Fahraeus-Lindqvist effect. The present study predicts the flow rate as a second-order polynomial function of inlet pressure due to vessel compliance. WSS in epicardial coronary arteries increases >15% with an increase of feed Hct from 45% to 60% and decreases >15% with a decrease of feed Hct from 45% to 30%, whereas WSS in small arterioles is not affected as feed Hct changes in this range. These findings have important implications for acute Hct changes under vasodilated conditions.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3