Gene profiling of the rat medial collateral ligament during early healing using microarray analysis

Author:

Chamberlain Connie S.1,Brounts Sabrina H.2,Sterken David G.1,Rolnick Kevin I.1,Baer Geoffrey S.1,Vanderby Ray13

Affiliation:

1. Department of Orthopedics and Rehabilitation,

2. School of Veterinary Medicine and Department of Surgical Sciences, and

3. Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin

Abstract

Ligament heals in a synchronized and complex series of events. The remodeling process may last months or years. Experimental evidence suggests the damaged ligament does not recover its normal functional properties. Specific mechanisms to prevent scar formation and to regenerate the original mechanical function remain elusive but likely involve regulation of creeping substitution. Creeping substitution creates a larger hypercellular, hypervascular, and disorganized granulation tissue mass that results in an inefficient and nonregenerative wound healing process for the ligament. Control of creeping substitution may limit the extent of this tissue compromise and reduce the time necessary for healing. The objective of this study is to better understand the mechanism behind scar formation by identifying the extracellular matrix factors and other unique genes of interest differentially expressed during rat ligament healing via microarray. For this study, rat medial collateral ligaments were either surgically transected or left intact. Ligaments were collected at day 3 or 7 postinjury and used for microarray, quantitative PCR, and/or immunohistochemistry. Results were compared with the normal intact ligament. We demonstrate that early ligament healing is characterized by the modulation of several inflammatory and extracellular matrix factors during the first week of injury. Specifically, a number of matrix metalloproteinases and collagens are differentially and significantly expressed during early ligament healing. Additionally, we demonstrate the modulation of three novel genes, periostin, collagen-triple helix repeat containing-1, and serine protease 35 in our ligament healing model. Together, control of granulation tissue creeping substitution and subsequent downstream scar formation is likely to involve these factors.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3