Impact of muscle length during stretch-shortening contractions on real-time and temporal muscle performance measures in rats in vivo

Author:

Cutlip R. G.1,Geronilla K. B.1,Baker B. A.1,Kashon M. L.1,Miller G. R.1,Schopper A. W.1

Affiliation:

1. Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505

Abstract

The objective of the present study was to investigate the impact of muscle length during stretch-shortening cycles on static and dynamic muscle performance. Animals were randomly assigned to an isometric (control, Con, n = 12), a short-muscle-length (S-Inj, 1.22-2.09 rad, n = 12), or a long-muscle-length (L-Inj, 1.57-2.44 rad, n = 12) group. The dorsiflexor muscles were exposed in vivo to 7 sets of 10 stretch-shortening contractions (conducted at 8.72 rad/s) or 7 sets of isometric contractions of the same stimulation duration by using a custom-designed dynamometer. Performance was characterized by multipositional isometric exertions and positive, negative, and net work before exposure, 6 h after exposure, and 48 h after exposure to contractions. Real-time muscle performance during the stretch-shortening cycles was characterized by stretch-shortening parameters and negative, positive, and net work. The S-Inj group recovery (force difference) was similar to the Con group force difference at 48 h, whereas the L-Inj group force difference was statistically greater at 1.39, 1.57, and 1.74 rad than the Con group force difference ( P < 0.05). Negative work ( P < 0.05) and net work ( P < 0.05) were statistically lower in the S-Inj and L-Inj groups than in the Con group 48 h after exposure to contractions. Of the real-time parameters, there was a difference in cyclic force with treatment during the stretch-shortening cycles ( P < 0.0001), with the L-Inj group being the most affected. Thus longer ranges of motion result in a more profound isometric force decrement 48 h after exposure to contractions and in real-time changes in eccentric forces.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3