Impact of endotracheal tube biofilm and respiratory secretions on airway resistance and mechanics of breathing in a neonatal lung model

Author:

Kenaley Kaitlin M.12,Blackson Tom1,Boylan Lori1,Ciarlo Joseph1,Antunes Michael1,Shaffer Thomas H.23,Locke Robert12

Affiliation:

1. Pediatrics/Neonatology, Christiana Care Health System, Newark, Delaware

2. Pediatrics/Neonatology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania

3. Alfred I. duPont Hospital for Children/Nemours, Wilmington, Delaware

Abstract

Endotracheal tube (ETT) obstruction from biofilm formation is a theoretical risk for intubated preterm neonates. The objective of this study is to determine the impact of ETT biofilm on ETT resistance and minute ventilation in a neonatal respiratory model. Postextubation 2.5- and 3.0-mm ETTs from ventilated preterm infants were matched with unused control ETTs. The pressure gradient across the ETT was measured at set flow rates and converted to airway resistance. Spontaneous breathing tests (SBTs) were performed using a virtual patient model and were considered “passed” if minute ventilation of patient ETTs was greater than 60% of control ETTs. Twenty-four 2.5-mm ETTs and sixteen 3.0-mm ETTs were analyzed. In both patient and control ETTs, as flow rate increases, the pressure gradient across the ETT also increases in a linear fashion. Resistance to flow in patient ETTs was statistically different from matched control ETTs ( P < 0.001), and patient ETTs had 19.9 cmH2O·l−1·sec−1 greater resistance than control ETTs. SBTs were performed in 27 of 40 ETTs. Twenty-six ETTs “passed” an SBT. In one obstructed 3.0-mm ETT, SBT measurements were unobtainable. The clinical impact of ETT biofilm as measured by a SBT appears to be minimal for the majority of patients in our study group. In 1 out of 27 ETTs, the presence of a biofilm significantly altered resistance to airflow and resulted in a failed SBT. Gas flow rate and ETT size had a greater impact on resistance to airflow and minute ventilation than ETT biofilm in this study sample. NEW & NOTEWORTHY This is the first study to our knowledge to characterize the impact of endotracheal tube (ETT) biofilm and respiratory secretions on resistance to airflow in a neonatal ETT using a simulation neonatal lung model. Results show that the clinical impact of ETT biofilm is minimal for the majority of patients in our study group, and ETT obstruction from biofilm is an uncommon cause of respiratory decompensation in a preterm neonate.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3