Effects of reduced tidal volume ventilation on pulmonary function in mice before and after acute lung injury

Author:

Thammanomai Apiradee,Majumdar Arnab,Bartolák-Suki Erzsébet,Suki Béla

Abstract

We investigated the influence of load impedance on ventilator performance and the resulting effects of reduced tidal volume (Vt) on lung physiology during a 30-min ventilation of normal mice and 10 min of additional ventilation following lavage-induced injury at two positive end-expiratory pressure (PEEP) levels. Respiratory mechanics were regularly monitored, and the lavage fluid was tested for the soluble E-cadherin, an epithelial cell adhesion molecule, and surfactant protein (SP) B. The results showed that, due to the load dependence of the delivered Vt from the small-animal ventilator: 1) uncontrolled ventilation in normal mice resulted in a lower delivered Vt (6 ml/kg at 3-cmH2O PEEP and 7 ml/kg at 6-cmH2O PEEP) than the prescribed Vt (8 ml/kg); 2) at 3-cmH2O PEEP, uncontrolled ventilation in normal mice led to an increase in lung parenchymal functional heterogeneity, a reduction of SP-B, and an increase in E-cadherin; 3) at 6-cmH2O PEEP, ventilation mode had less influence on these parameters; and 4) in a lavage model of acute respiratory distress syndrome, delivered Vt decreased to 4 ml/kg from the prescribed 8 ml/kg, which resulted in severely compromised lung function characterized by increases in lung elastance, airway resistance, and alveolar tissue heterogeneity. Furthermore, the low Vt ventilation also resulted in poor survival rate independent of PEEP. These results highlight the importance of delivering appropriate Vt to both the normal and injured lungs. By leaving the Vt uncompensated, it can significantly alter physiological and biological responses in mice.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Reference43 articles.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3