Attenuated hepatosplanchnic uptake of lactate during intense exercise in humans

Author:

Nielsen H. B.12,Clemmesen J. O.2,Skak C.1,Ott P.2,Secher N. H.1

Affiliation:

1. Copenhagen Muscle Research Center, Departments ofAnesthesia and

2. Hepatology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark

Abstract

We evaluated whether the increase in blood lactate with intense exercise is influenced by a low hepatosplanchnic blood flow as assessed by indocyanine green dye elimination and blood sampling from an artery and the hepatic vein in eight men. The hepatosplanchnic blood flow decreased from a resting value of 1.6 ± 0.1 to 0.7 ± 0.1 (SE) l/min during exercise. Yet the hepatosplanchnic O2uptake increased from 67 ± 3 to 93 ± 13 ml/min, and the output of glucose increased from 1.1 ± 0.1 to 2.1 ± 0.3 mmol/min ( P < 0.05). Even at the lowest hepatosplanchnic venous hemoglobin O2 saturation during exercise of 6%, the average concentration of glucose in arterial blood was maintained close to the resting level (5.2 ± 0.2 vs. 5.5 ± 0.2 mmol/l), whereas the difference between arterial and hepatic venous blood glucose increased to a maximum of 22 mmol/l. In arterial blood, the concentration of lactate increased from 1.1 ± 0.2 to 6.0 ± 1.0 mmol/l, and the hepatosplanchnic uptake of lactate was elevated from 0.4 ± 0.06 to 1.0 ± 0.05 mmol/min during exercise ( P < 0.05). However, when the hepatosplanchnic venous hemoglobin O2 saturation became low, the arterial and hepatosplanchnic venous blood lactate difference approached zero. Even with a marked reduction in its blood flow, exercise did not challenge the ability of the liver to maintain blood glucose homeostasis. However, it appeared that the contribution of the Cori cycle decreased, and the accumulation of lactate in blood became influenced by the reduced hepatosplanchnic blood flow.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3