Effects of undernutrition on respiratory mechanics and lung parenchyma remodeling

Author:

Dias Cristina Márcia,Pássaro Caroline P.,Cagido Viviane Ramos,Einicker-Lamas Marcelo,Lowe Jennifer,Negri Elnara M.,Capelozzi Vera L.,Zin Walter A.,Rocco Patricia R. M.

Abstract

Undernutrition thwarts lung structure and function, but there are disagreements about the behavior of lung mechanics in malnourished animals. To clarify this issue, lung and chest wall mechanical properties were subdivided into their resistive, elastic, and viscoelastic properties in nutritionally deprived (ND) rats and correlated with the data gathered from histology (light and electron microscopy and elastic fiber content), and bronchoalveolar lavage fluid analysis (lipid and protein content). Twenty-four Wistar rats were assigned into two groups. In the control (Ctrl) group the animals received food ad libitum. In the ND group, rats received one-third of their usual daily food consumption until they lost 40% of their initial body weight. Lung static elastance, viscoelastic and resistive pressures (normalized by functional residual capacity), and chest wall pressures were higher in the ND group than in the Ctrl group. The ND group exhibited patchy atelectasis, areas of emphysema, interstitial edema, and reduced elastic fiber content. The amount of lipid and protein in bronchoalveolar lavage fluid was significantly reduced in the ND group. Electron microscopy showed 1) type II pneumocytes with a reduction in lamellar body content, multilamellated structures, membrane vesicles, granular debris, and structurally aberrant mitochondria; and 2) diaphragm and intercostals with atrophy, disarrangement of the myofibrils, and deposition of collagen type I fibers. In conclusion, undernutrition led to lung and chest wall mechanical changes that were the result from a balance among the following modifications: 1) distorted structure of diaphragm and intercostals, 2) surfactant content reduction, and 3) decrease in elastic fiber content.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3