Gas exchange during exercise in habitually active asthmatic subjects

Author:

Haverkamp H. C.,Dempsey J. A.,Miller J. D.,Romer L. M.,Pegelow D. F.,Rodman J. R.,Eldridge M. W.

Abstract

We determined the relations among gas exchange, breathing mechanics, and airway inflammation during moderate- to maximum-intensity exercise in asthmatic subjects. Twenty-one habitually active (48.2 ± 7.0 ml·kg−1·min−1 maximal O2 uptake) mildly to moderately asthmatic subjects (94 ± 13% predicted forced expiratory volume in 1.0 s) performed treadmill exercise to exhaustion (11.2 ± 0.15 min) at ∼90% of maximal O2 uptake. Arterial O2 saturation decreased to ≤94% during the exercise in 8 of 21 subjects, in large part as a result of a decrease in arterial Po2 (PaO2): from 93.0 ± 7.7 to 79.7 ± 4.0 Torr. A widened alveolar-to-arterial Po2 difference and the magnitude of the ventilatory response contributed approximately equally to the decrease in PaO2 during exercise. Airflow limitation and airway inflammation at baseline did not correlate with exercise gas exchange, but an exercise-induced increase in sputum histamine levels correlated with exercise PaO2 (negatively) and alveolar-to-arterial Po2 difference (positively). Mean pulmonary resistance was high during exercise (3.4 ± 1.2 cmH2O·l−1·s) and did not increase throughout exercise. Expiratory flow limitation occurred in 19 of 21 subjects, averaging 43 ± 35% of tidal volume near end exercise, and end-expiratory lung volume rose progressively to 0.25 ± 0.47 liter greater than resting end-expiratory lung volume at exhaustion. These mechanical constraints to ventilation contributed to a heterogeneous and frequently insufficient ventilatory response; arterial Pco2 was 30–47 Torr at end exercise. Thus pulmonary gas exchange is impaired during high-intensity exercise in a significant number of habitually active asthmatic subjects because of high airway resistance and, possibly, a deleterious effect of exercise-induced airway inflammation on gas exchange efficiency.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3