Effects of increases in carboxyhemoglobin percent saturation and tissue hypoxia on carbon monoxide binding to skeletal and heart extravascular tissues

Author:

Coburn Ronald F.1

Affiliation:

1. Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States

Abstract

The major goal of this article was to quantify relationships of the carboxyhemoglobin % saturation, a calculated tissue PCO and tissue hypoxia to the binding of carbon monoxide (CO) to canine skeletal and heart ventricular muscle extravascular (EV) tissue under normal conditions and during CO poisoning scenarios. These data are relevant to CO poisoning because CO bound to EV cellular hemoproteins evoke metabolic changes that produce toxic effects. Skeletal and heart muscle EV CO contents were calculated from data obtained from biopsies performed on living anesthetized dogs reported in previous publications (4, 6). Results include normal values of EV CO contents of resting skeletal muscle and heart ventricular muscle, effects of increasing COHb% saturation and a calculated mean tissue PCO on skeletal muscle EV CO binding, and effects of tissue hypoxia evoked by arterial hypoxemia on EV CO binding in both of these tissues. This study is the first that shows that tissue hypoxia-induced CO shifts out of blood resulting in increased EV CO binding are a mechanism that causes CO toxicity. Projections of results to tissue PCO levels occurring during different severe CO toxicity scenarios predict that skeletal muscle EV CO contents could increase as much as 100 to 300 fold.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3