Possible mechanisms underlying slow component of V̇o2 on-kinetics in skeletal muscle

Author:

Korzeniewski Bernard1,Zoladz Jerzy A.2

Affiliation:

1. Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland; and

2. Department of Muscle Physiology, Faculty of Rehabilitation, University School of Physical Education, Kraków, Poland

Abstract

A computer model of a skeletal muscle bioenergetic system is used to study the background of the slow component of oxygen consumption V̇o2 on-kinetics in skeletal muscle. Two possible mechanisms are analyzed: inhibition of ATP production by anaerobic glycolysis by progressive cytosol acidification (together with a slow decrease in ATP supply by creatine kinase) and gradual increase of ATP usage during exercise of constant power output. It is demonstrated that the former novel mechanism is potent to generate the slow component. The latter mechanism further increases the size of the slow component; it also moderately decreases metabolite stability and has a small impact on muscle pH. An increase in anaerobic glycolysis intensity increases the slow component, elevates cytosol acidification during exercise, and decreases phosphocreatine and Pi stability, although slightly increases ADP stability. A decrease in the P/O ratio (ATP molecules/O2 molecules) during exercise cannot also be excluded as a relevant mechanism, although this issue requires further study. It is postulated that both the progressive inhibition of anaerobic glycolysis by accumulating protons (together with a slow decrease of the net creatine kinase reaction rate) and gradual increase of ATP usage during exercise, and perhaps a decrease in P/O, contribute to the generation of the slow component of the V̇o2 on-kinetics in skeletal muscle.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3