Mitigation of airways responsiveness by deep inflation of the lung

Author:

Bates Jason H. T.1,Rajendran Vignesh1

Affiliation:

1. Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont

Abstract

Stretching activated strips of airway smooth muscle (ASM) significantly affects both active force and stiffness due to a temporary reduction of the proportion of cycling myosin cross bridges that are bound to their actin binding sites. For the same reason, stretch applied to ASM in situ by a deep inflation (DI) of the lungs is one of the most potent means of reversing bronchoconstriction. When the DI is sufficiently large, however, and is applied while bronchoconstriction is in the process of developing, the subsequent depression in airway resistance is more persistent than can be attributed simply to temporary detachment of ASM cross bridges. In the present study, we use a computational model to demonstrate that this DI-induced ablation of airway responsiveness can be explained by a dose-dependent reduction in the number of cross bridges available to bind to actin when the ASM in the airway wall is stretched above a critical threshold strain and that this disruption of the contractile apparatus recovers over an order of magnitude longer time scale than that of the simple reattachment of unbound cross bridges. NEW & NOTEWORTHY The mechanisms by which deep inflation of the lung reverse bronchoconstriction and affect subsequent airway responsiveness have important potential implications for asthma, yet remain controversial. This study uses computational modeling to posit a mechanism by which sufficiently vigorous inflations applied during active bronchoconstriction not only transiently reverse bronchoconstriction, but also reduce subsequent airways responsiveness for a period of time. Fitting the model to published data in mice supports this notion.

Funder

HHS | NIH | National Heart, Lung, and Blood Institute (NHBLI)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Antenatal Endotoxin Induces Dysanapsis in Experimental Bronchopulmonary Dysplasia;American Journal of Respiratory Cell and Molecular Biology;2024-04

2. Chemical Activation of Piezo1 Alters Biomechanical Behaviors toward Relaxation of Cultured Airway Smooth Muscle Cells;Biological and Pharmaceutical Bulletin;2023-01-01

3. Smooth muscle in abnormal airways;Current Opinion in Physiology;2021-06

4. Nocturnal bilevel positive airway pressure for the treatment of asthma;Respiratory Physiology & Neurobiology;2020-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3