Effect of CO2 on the ventilatory sensitivity to rising body temperature during exercise

Author:

Hayashi Keiji12,Honda Yasushi1,Miyakawa Natsuki1,Fujii Naoto1,Ichinose Masashi3,Koga Shunsaku4,Kondo Narihiko5,Nishiyasu Takeshi1

Affiliation:

1. Institute of Health and Sports Science, University of Tsukuba, Tsukuba;

2. Junior College, University of Shizuoka, Shizuoka;

3. Human Integrative Physiology Laboratory, School of Business Administration, Meiji University, Tokyo;

4. Kobe Design University, Kobe; and

5. Faculty of Human Development, Kobe University, Kobe, Japan

Abstract

We examined the degree to which ventilatory sensitivity to rising body temperature (the slope of the regression line relating ventilation and body temperature) is altered by restoration of arterial Pco2 to the eucapnic level during prolonged exercise in the heat. Thirteen subjects exercised for ∼60 min on a cycle ergometer at 50% of peak O2 uptake with and without inhalation of CO2-enriched air. Subjects began breathing CO2-enriched air at the point that end-tidal Pco2 started to decline. Esophageal temperature (Tes), minute ventilation (V̇e), tidal volume (VT), respiratory frequency ( fR), respiratory gases, middle cerebral artery blood velocity, and arterial blood pressure were recorded continuously. When V̇e, VT, fR, and ventilatory equivalents for O2 uptake (V̇e/V̇o2) and CO2 output (V̇e/V̇co2) were plotted against changes in Tes from the start of the CO2-enriched air inhalation (ΔTes), the slopes of the regression lines relating V̇e, VT, V̇e/V̇o2, and V̇e/V̇co2 to ΔTes (ventilatory sensitivity to rising body temperature) were significantly greater when subjects breathed CO2-enriched air than when they breathed room air (V̇e: 19.8 ± 10.3 vs. 8.9 ± 6.7 l·min−1·°C−1, VT: 18 ± 120 vs. −81 ± 92 ml/°C; V̇e/V̇o2: 7.4 ± 5.5 vs. 2.6 ± 2.3 units/°C, and V̇e/V̇co2: 7.6 ± 6.6 vs. 3.4 ± 2.8 units/°C). The increase in V̇e was accompanied by increases in VT and fR. These results suggest that restoration of arterial Pco2 to nearly eucapnic levels increases ventilatory sensitivity to rising body temperature by around threefold.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3