Optimization of oxygen tolerance extension in rats by intermittent exposure

Author:

Clark J. M.,Lambertsen C. J.,Gelfand R.,Troxel A. B.

Abstract

Optimization of oxygen tolerance extension by intermittent exposure was studied in groups of 20 rats exposed to systematically varied patterns of alternating oxygen and normoxic breathing periods at 4.0, 2.0, and 1.5 ATA. Oxygen periods of 20, 60, and 120 min were alternated with normoxic intervals that provided oxygen-to-normoxia ratios of 4:1, 2:1, 1:1, and 1:3. In general, median survival times had nearly linear relationships to increasing normoxic intervals with oxygen period held constant. Exceptions occurred at 4.0 and 2.0 ATA where a 5-min normoxic interval was too short for adequate recovery even with a 20-min oxygen period, and an oxygen period of 120 min was too long even with a normoxic interval of 30 min. These exceptions did not occur at 1.5 ATA. Survival time for many intermittent exposure patterns was equivalent to that for continuous exposure to an oxygen pressure definable as a time-weighted average of the alternating oxygen and normoxia periods. However, this predictive method underestimated the degree of protection achieved by several of the intermittent exposure patterns, especially those performed at 4.0 ATA. Results provided guidance for selection of intermittent exposure patterns for direct evaluation in humans breathing oxygen at 2.0 ATA. Definition of intermittent exposure patterns and conditions that produced prominent gains in oxygen tolerance can also facilitate the performance of future experiments designed to study potential mechanisms for oxygen tolerance extension by intermittent exposure. Heat shock and oxidation-specific stress proteins that are induced by exposure to oxidant injury are suggested for emphasis in such investigations.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Reference31 articles.

1. Berghage TE.Notes on three recompression treatment research projects.The Twentieth Undersea Medical Society Workshop, Duke University. Undersea Medical Society, Kensington, MD, 1979, p. 57–69.

2. Berghage TEand Borkat FR.An oxygen toxicity computer. In:Naval Health Research Center Report No. 80-28. San Diego: Naval Health Research Center; Naval Medical Research and Development Command, 1980.

3. Brooksby GA, Dennis RL, and Staley RW.Effects of continuous exposure of rats to 100 percent oxygen at 450 mmHg for 64 days.Aerospace Med37: 243–246, 1966.

4. Camhi SL, Lee P, and Choi AM.The oxidative stress response.New Horiz3: 170–182, 1995.

5. Heme oxygenase-1: function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3