Affiliation:
1. Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
Abstract
This study examined the time course and extent of decrease in peak oxygen uptake (V̇o2peak) during self-paced exercise in HOT (35°C and 60% relative humidity) and COOL (18°C and 40% relative humidity) laboratory conditions. Ten well-trained cyclists completed four consecutive 16.5-min time trials (15-min self-paced effort with 1.5-min maximal end-spurt to determine V̇o2peak) interspersed by 5 min of recovery on a cycle ergometer in each condition. Rectal temperature increased significantly more in HOT (39.4 ± 0.7°C) than COOL (38.6 ± 0.3°C; P < 0.001). Power output was lower throughout HOT compared with COOL ( P < 0.001). The decrease in power output from trial 1 to 4 was ∼16% greater in HOT ( P < 0.001). Oxygen uptake (V̇o2) was lower throughout HOT than COOL ( P < 0.05), except at 5 min and during the end-spurt in trial 1. In HOT, V̇o2peak reached 97, 89, 85, and 85% of predetermined maximal V̇o2, whereas in COOL 97, 94, 93, and 92% were attained. Relative exercise intensity (%V̇o2peak) during trials 1 and 2 was lower in HOT (∼84%) than COOL (∼86%; P < 0.05), decreasing slightly during trials 3 and 4 (∼80 and ∼85%, respectively; P < 0.05). However, heart rate was higher throughout HOT ( P = 0.002), and ratings of perceived exertion greater during trials 3 and 4 in HOT ( P < 0.05). Consequently, the regulation of self-paced exercise appears to occur in conjunction with the maintenance of %V̇o2peak within a narrow range (80-85% V̇o2peak). This range widens under heat stress, however, when exercise becomes protracted and a disassociation develops between relative exercise intensity, heart rate, and ratings of perceived exertion.
Funder
Qatar National Reserach Fund - Junior Scientist Research Experience Program
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献