Self-paced exercise in hot and cool conditions is associated with the maintenance of %V̇o2peak within a narrow range

Author:

Périard Julien D.1,Racinais Sébastien1

Affiliation:

1. Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar

Abstract

This study examined the time course and extent of decrease in peak oxygen uptake (V̇o2peak) during self-paced exercise in HOT (35°C and 60% relative humidity) and COOL (18°C and 40% relative humidity) laboratory conditions. Ten well-trained cyclists completed four consecutive 16.5-min time trials (15-min self-paced effort with 1.5-min maximal end-spurt to determine V̇o2peak) interspersed by 5 min of recovery on a cycle ergometer in each condition. Rectal temperature increased significantly more in HOT (39.4 ± 0.7°C) than COOL (38.6 ± 0.3°C; P < 0.001). Power output was lower throughout HOT compared with COOL ( P < 0.001). The decrease in power output from trial 1 to 4 was ∼16% greater in HOT ( P < 0.001). Oxygen uptake (V̇o2) was lower throughout HOT than COOL ( P < 0.05), except at 5 min and during the end-spurt in trial 1. In HOT, V̇o2peak reached 97, 89, 85, and 85% of predetermined maximal V̇o2, whereas in COOL 97, 94, 93, and 92% were attained. Relative exercise intensity (%V̇o2peak) during trials 1 and 2 was lower in HOT (∼84%) than COOL (∼86%; P < 0.05), decreasing slightly during trials 3 and 4 (∼80 and ∼85%, respectively; P < 0.05). However, heart rate was higher throughout HOT ( P = 0.002), and ratings of perceived exertion greater during trials 3 and 4 in HOT ( P < 0.05). Consequently, the regulation of self-paced exercise appears to occur in conjunction with the maintenance of %V̇o2peak within a narrow range (80-85% V̇o2peak). This range widens under heat stress, however, when exercise becomes protracted and a disassociation develops between relative exercise intensity, heart rate, and ratings of perceived exertion.

Funder

Qatar National Reserach Fund - Junior Scientist Research Experience Program

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3