The 1- to 2-Hz oscillations in muscle force are exacerbated by stress, especially in older adults

Author:

Christou Evangelos A.,Jakobi Jennifer M.,Critchlow Ashley,Fleshner Monika,Enoka Roger M.

Abstract

Although force fluctuations during a steady contraction are often heightened in old adults compared with young adults and are enhanced in young adults during the stress response, the mechanisms underlying the augmentation are uncertain. The purpose of the study was to compare the effect of a stressor on the plasma concentrations of selected stress hormones and on the force fluctuations experienced by young and old adults during the performance of a precision grip. Thirty-six men and women (19–86 yr) participated in a protocol that comprised anticipatory (30 min), stressor (15 min), and recovery periods (25 min). The stressor was a series of noxious electrical stimuli applied to the dorsal surface of the left hand. Subjects sustained a pinch-grip force with the right hand at 2% of the maximal voluntary contraction force. The fluctuations in pinch-grip force, the interference electromyogram (EMG) of six muscles, and the spectra for the force and EMG were quantified across the 70-min protocol. The stressor increased the force fluctuations, largely due to an enhancement of the power at 1–2 Hz in the force spectrum ( r2 = 0.46). The effect was greatest for the old adults compared with young and middle-aged adults. The plasma concentrations of the stress hormones (adrenocorticotropin, epinephrine, and norepinephrine) were elevated to similar levels for all three age groups, and the changes were not associated with modulation of the force fluctuations. Furthermore, the heightened EMG activity exhibited by the old adults during all periods was not related to the changes in the force fluctuations or the 1- to 2-Hz force oscillations. The absence of a change in the mean pinch-grip force during the protocol and the lack of an association between elevation of the plasma concentrations for the stress hormones and modulation of the force fluctuations suggest that the enhanced force fluctuations caused by the stressor was due to an increase in the low-frequency output of the spinal motor neurons.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3