Preserved reflex cutaneous vasodilation in cystic fibrosis does not include an enhanced nitric oxide-dependent mechanism

Author:

Wilkins Brad W.,Martin Elizabeth A.,Roberts Shelly K.,Joyner Michael J.

Abstract

In humans, vasoactive intestinal peptide (VIP) may play a role in reflex cutaneous vasodilation during body heating. We tested the hypothesis that the nitric oxide (NO)-dependent contribution to active vasodilation is enhanced in the skin of subjects with cystic fibrosis (CF), compensating for sparse levels of VIP. In 2 parallel protocols, microdialysis fibers were placed in the skin of 11 subjects with CF and 12 controls. Lactated Ringer was perfused at one microdialysis site and NG-nitro-l-arginine methyl ester (2.7 mg/ml) was perfused at a second microdialysis site. Skin blood flow was monitored over each site with laser-Doppler flowmetry. In protocol 1, local skin temperature was increased 0.5°C every 5 s to 42°C, and then it maintained at 42°C for ∼45 min. In protocol 2, subjects wore a tube-lined suit perfused with water at 50°C, sufficient to increase oral temperature (Tor) 0.8°C. Cutaneous vascular conductance (CVC) was calculated (flux/mean arterial pressure) and scaled as percent maximal CVC (sodium nitroprusside; 8.3 mg/ml). Vasodilation to local heating was similar between groups. The change (Δ%CVCmax) in CVC with NO synthase inhibition on the peak (9 ± 3 vs. 12 ± 5%CVCmax; P = 0.6) and the plateau (45 ± 3 vs. 35 ± 5%CVCmax; P = 0.1) phase of the skin blood flow response to local heating was similar in CF subjects and controls, respectively. Reflex cutaneous vasodilation increased CVC in CF subjects (58 ± 4%CVCmax) and controls (53 ± 4%CVCmax; P = 0.37) and NO synthase inhibition attenuated CVC in subjects with CF (37 ± 6%CVCmax) and controls (35 ± 5%CVCmax; P = 0.8) to a similar degree. Thus the preservation of cutaneous active vasodilation in subjects with CF is not associated with an enhanced NO-dependent vasodilation.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3