Author:
Fan Jui-Lin,Cotter James D.,Lucas Rebekah A. I.,Thomas Kate,Wilson Luke,Ainslie Philip N.
Abstract
The influence of severe passive heat stress and hypohydration (Hypo) on cardiorespiratory and cerebrovascular function is not known. We hypothesized that 1) heating-induced hypocapnia and peripheral redistribution of cardiac output (Q̇) would compromise blood flow velocity in the middle cerebral artery (MCAv) and cerebral oxygenation; 2) Hypo would exacerbate the hyperthermic-induced hypocapnia, further decreasing MCAv; and 3) heating would reduce MCAv-CO2 reactivity, thereby altering ventilation. Ten men, resting supine in a water-perfused suit, underwent progressive hyperthermia [0.5°C increments in core (esophageal) temperature (TC) to +2°C] while euhydrated (Euh) or Hypo by 1.5% body mass (attained previous evening). Time-control (i.e., non-heat stressed) data were obtained on six of these subjects. Cerebral oxygenation (near-infrared spectroscopy), MCAv, end-tidal carbon dioxide (PetCO2) and arterial blood pressure, Q̇ (flow model), and brachial and carotid blood flows (CCA) were measured continuously each 0.5°C change in TC. At each level, hypercapnia was achieved through 3-min administrations of 5% CO2, and hypocapnia was achieved with controlled hyperventilation. At baseline in Hypo, heart rate, MCAv and CCA were elevated ( P < 0.05 vs. Euh). MCAv-CO2 reactivity was unchanged in both groups at all TC levels. Independent of hydration, hyperthermic-induced hyperventilation caused a severe drop in PetCO2 (−8 ± 1 mmHg/°C), which was related to lower MCAv (−15 ± 3%/°C; R2 = 0.98; P < 0.001). Elevations in Q̇ were related to increases in brachial blood flow ( R2 = 0.65; P < 0.01) and reductions in MCAv ( R2 = 0.70; P < 0.01), reflecting peripheral distribution of Q̇. Cerebral oxygenation was maintained, presumably via enhanced O2-extraction or regional differences in cerebral perfusion.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
78 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献