Diet-induced obesity causes innate airway hyperresponsiveness to methacholine and enhances ozone-induced pulmonary inflammation

Author:

Johnston Richard A.,Theman Todd A.,Lu Frank L.,Terry Raya D.,Williams Erin S.,Shore Stephanie A.

Abstract

We previously reported that genetically obese mice exhibit innate airway hyperresponsiveness (AHR) and enhanced ozone (O3)-induced pulmonary inflammation. Such genetic deficiencies in mice are rare in humans, and they may not be representative of human obesity. Thus the purpose of this study was to determine the pulmonary phenotype of mice with diet-induced obesity (DIO), which more closely mimics the cause of human obesity. Therefore, wild-type C57BL/6 mice were reared from the time of weaning until at least 30 wk of age on diets in which either 10 or 60% of the calories are derived from fat in the form of lard. Body mass was ∼40% greater in mice fed 60 vs. 10% fat diets. Baseline airway responsiveness to intravenous methacholine, measured by forced oscillation, was greater in mice fed 60 vs. 10% fat diets. We also examined lung permeability and inflammation after exposure to room air or O3 (2 parts/million for 3 h), an asthma trigger. Four hours after the exposure ended, O3-induced increases in bronchoalveolar lavage fluid protein, interleukin-6, KC, macrophage inflammatory protein-2, interferon-γ-inducible protein-10, and eotaxin were greater in mice fed 60 vs. 10% fat diets. Innate AHR and augmented responses to O3 were not observed in mice raised from weaning until 20–22 wk of age on a 60% fat diet. These results indicate that mice with DIO exhibit innate AHR and enhanced O3-induced pulmonary inflammation, similar to genetically obese mice. However, mice with DIO must remain obese for an extended period of time before this pulmonary phenotype is observed.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 119 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3