Activation of α1-adrenoceptors facilitates excitatory inputs to medullary airway vagal preganglionic neurons

Author:

Ge Dengyun1,Yan Xianxia1,Guo Yuhong1,Chen Xingxin1,Guan Ruijuan2,Chen Yonghua2,Qiu Dongying3,Wang Jijiang12

Affiliation:

1. Department of Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China;

2. Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China; and

3. Department of Gerontology, Zhongshan Hospital, Fudan University, Shanghai, China

Abstract

In mammals, the neural control of airway smooth muscle is dominated by a subset of airway vagal preganglionic neurons in the ventrolateral medulla. These neurons are physiologically modulated by adrenergic/noradrenergic projections, and weakened α2-adrenergic inhibition of them is indicated to participate in the pathogenesis and exacerbation of asthma. This study tests whether these neurons are modulated by α1-adrenoceptors, and if so, how. In anesthetized adult rats, microinjection of the α1A-adrenoceptor agonist A61603 (1 pmol) unilaterally into the medullary region containing these neurons caused a significant increase in airway resistance, which was prevented by intraperitoneal atropine (0.5 mg/kg). In rhythmically firing medullary slices of newborn rats, A61603 (10 nM) caused depolarization in both the inspiratory-activated and inspiratory-inhibited airway vagal preganglionic neurons that were retrogradely labeled, and a significant increase in the spontaneous firing rate. Under voltage clamp, A61603 significantly enhanced the spontaneous excitatory inputs to both types of neurons and caused a tonic inward current in the inspiratory-activated neurons along with significantly increased peak amplitude of the inspiratory inward currents. The responses in vitro were prevented by α1A-adrenoceptor antagonist RS100329 (1 μM), which alone significantly inhibited the spontaneous excitatory inputs to both types of the neurons. After pretreatment with tetrodotoxin (1 μM), A61603 (10 or 100 nM) had no effect on either type of neuron. We conclude that in rats, activation of α1-adrenoceptors in the medullary region containing airway vagal preganglionic neurons increases airway vagal tone, and that this effect is primarily mediated by facilitation of the excitatory inputs to the preganglionic neurons.

Funder

National Natural Science Foundation of China (NSFC)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3