Metabolic equivalent: one size does not fit all

Author:

Byrne Nuala M.,Hills Andrew P.,Hunter Gary R.,Weinsier Roland L.,Schutz Yves

Abstract

The metabolic equivalent (MET) is a widely used physiological concept that represents a simple procedure for expressing energy cost of physical activities as multiples of resting metabolic rate (RMR). The value equating 1 MET (3.5 ml O2·kg−1·min−1 or 1 kcal·kg−1·h−1) was first derived from the resting O2 consumption (V̇o2) of one person, a 70-kg, 40-yr-old man. Given the extensive use of MET levels to quantify physical activity level or work output, we investigated the adequacy of this scientific convention. Subjects consisted of 642 women and 127 men, 18–74 yr of age, 35–186 kg in weight, who were weight stable and healthy, albeit obese in some cases. RMR was measured by indirect calorimetry using a ventilated hood system, and the energy cost of walking on a treadmill at 5.6 km/h was measured in a subsample of 49 men and 49 women (26–45 kg/m2; 29–47 yr). Average V̇o2 and energy cost corresponding with rest (2.6 ± 0.4 ml O2·kg−1·min−1 and 0.84 ± 0.16 kcal·kg−1·h−1, respectively) were significantly lower than the commonly accepted 1-MET values of 3.5 ml O2·kg−1·min−1 and 1 kcal·kg−1·h−1, respectively. Body composition (fat mass and fat-free mass) accounted for 62% of the variance in resting V̇o2 compared with age, which accounted for only 14%. For a large heterogeneous sample, the 1-MET value of 3.5 ml O2·kg−1·min−1 overestimates the actual resting V̇o2 value on average by 35%, and the 1-MET of 1 kcal/h overestimates resting energy expenditure by 20%. Using measured or predicted RMR (ml O2·kg−1·min−1 or kcal·kg−1·h−1) as a correction factor can appropriately adjust for individual differences when estimating the energy cost of moderate intensity walking (5.6 km/h).

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3