Role of the hypoglossal nerve in equine nasopharyngeal stability

Author:

Cheetham Jonathan,Pigott John H.,Hermanson John W.,Campoy Luis,Soderholm Leo V.,Thorson Lisa M.,Ducharme Norm G.

Abstract

The equine upper airway is highly adapted to provide the extremely high oxygen demand associated with strenuous aerobic exercise in this species. The tongue musculature, innervated by the hypoglossal nerve, plays an important role in airway stability in humans who also have a highly adapted upper airway to allow speech. The role of the hypoglossal nerve in stabilizing the equine upper airway has not been established. Isolated tongues from eight mature horses were dissected to determine the distal anatomy and branching of the equine hypoglossal nerve. Using this information, a peripheral nerve location technique was used to perform bilateral block of the common trunk of the hypoglossal nerve in 10 horses. Each horse was subjected to two trials with bilateral hypoglossal nerve block and two control trials (unblocked). Upper airway stability at exercise was determined using videoendoscopy and measurement of tracheal and pharyngeal pressure. Three main nerve branches were identified, medial and lateral branches and a discrete branch that innervated the geniohyoid muscle alone. Bilateral hypoglossal block induced nasopharyngeal instability in 10/19 trials, and none of the control trials (0/18) resulted in instability ( P < 0.001). Mean treadmill speed (± SD) at the onset of instability was 10.8 ± 2.5 m/s. Following its onset, nasopharyngeal instability persisted until the end of the treadmill test. This instability, induced by hypoglossal nerve block, produced an expiratory obstruction similar to that seen in a naturally occurring equine disease (dorsal displacement of the soft palate, DDSP) with reduced inspiratory and expiratory pharyngeal pressure and increased expiratory tracheal pressure. These data suggest that stability of the equine upper airway at exercise may be mediated through the hypoglossal nerve. Naturally occurring DDSP in the horse shares a number of anatomic similarities with obstructive sleep apnea. Study of species with extreme respiratory adaptation, such as the horse, may provide insight into respiratory functioning in humans.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3