Author:
Tichauer Kenneth M.,Elliott Jonathan T.,Hadway Jennifer A.,Lee Ting-Yim,St. Lawrence Keith
Abstract
The therapeutic window following perinatal hypoxia-ischemia is brief, and early clinical signs of injury can be subtle. Electroencephalography (EEG) represents the most promising early diagnostic of hypoxia-ischemia; however, some studies have questioned the sensitivity and specificity of EEG. The present study investigated the use of both near-infrared spectroscopy (NIRS) measurements of the cerebral metabolic rate of oxygen (CMRO2) and amplitude-integrated EEG (aEEG) to detect the severity of hypoxia-ischemia after 1 h of reperfusion in newborn piglets (10 insult, 3 control). The CMRO2 was measured before and after 1 h of reperfusion from hypoxia-ischemia, the duration of which was varied from piglet to piglet with a range of 3–24 min, under fentanyl/nitrous oxide anesthesia to mimic awake-like levels of cerebral metabolism. EEG data were collected throughout the study. On average, the CMRO2 and mean aEEG background signals were significantly depressed following the insult ( P < 0.05). Mean CMRO2 and mean aEEG background were 2.61 ± 0.11 ml O2·min−1·100 g−1 and 20.4 ± 2.7 μV before the insult and 1.58 ± 0.09 ml O2·min−1·100 g−1 and 11.8 ± 2.9 μV after 1 h of reperfusion, respectively. Both CMRO2 and aEEG displayed statistically significant correlations with duration of ischemia ( P < 0.05; r = 0.71 and r = 0.89, respectively); however, only CMRO2 was sensitive to milder injuries (<5 min). This study highlights the potential for combining NIRS measures of CMRO2 with EEG in the neonatal intensive care unit to improve early detection of perinatal hypoxia-ischemia.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献