Transient influence of end-tidal carbon dioxide tension on the postural restraint in cerebral perfusion

Author:

Immink Rogier V.,Truijen Jasper,Secher Niels H.,Van Lieshout Johannes J.

Abstract

In the upright position, cerebral blood flow is reduced, maybe because arterial carbon dioxide partial pressure (PaCO2) decreases. We evaluated the time-dependent influence of a reduction in PaCO2, as indicated by the end-tidal Pco2 tension (PetCO2), on cerebral perfusion during head-up tilt. Mean arterial pressure, cardiac output, middle cerebral artery mean flow velocity (MCA Vmean), and dynamic cerebral autoregulation at supine rest and 70° head-up tilt were determined during free breathing and with PetCO2 clamped to the supine level. The postural changes in central hemodynamic variables were equivalent, and the cerebrovascular autoregulatory capacity was not significantly affected by tilt or by clamping PetCO2. In the first minute of tilt, the decline in MCA Vmean (10 ± 4 vs. 3 ± 4 cm/s; mean ± SE; P < 0.05) and PetCO2 (6.8 ± 4.3 vs. 1.7 ± 1.6 Torr; P < 0.05) was larger during spontaneous breathing than during isocapnic tilt. However, after 2 min in the head-up position, the reduction in MCA Vmean was similar (7 ± 5 vs. 6 ± 3 cm/s), although the spontaneous decline in PetCO2 was maintained ( P < 0.05 vs. isocapnic tilt). These results suggest that the potential contribution of PaCO2 to the postural reduction in MCA Vmean is transient, leaving the mechanisms for the sustained restrain in MCA Vmean to be identified.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Reference58 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3