Local tetrahydrobiopterin administration augments reflex cutaneous vasodilation through nitric oxide-dependent mechanisms in aged human skin

Author:

Stanhewicz Anna E.1,Bruning Rebecca S.2,Smith Caroline J.2,Kenney W. Larry12,Holowatz Lacy A.12

Affiliation:

1. Graduate Degree Program in Physiology and

2. Department of Kinesiology, The Pennsylvania State University, Noll Laboratory, University Park, Pennsylvania

Abstract

Functional constitutive nitric oxide synthase (NOS) is required for full expression of reflex cutaneous vasodilation that is attenuated in aged skin. Both the essential cofactor tetrahydrobiopterin (BH4) and adequate substrate concentrations are necessary for the functional synthesis of nitric oxide (NO) through NOS, both of which are reduced in aged vasculature through increased oxidant stress and upregulated arginase, respectively. We hypothesized that acute local BH4 administration or arginase inhibition would similarly augment reflex vasodilation in aged skin during passive whole body heat stress. Four intradermal microdialysis fibers were placed in the forearm skin of 11 young (22 ± 1 yr) and 11 older (73 ± 2 yr) men and women for local infusion of 1) lactated Ringer, 2) 10 mM BH4, 3) 5 mM ( S)-(2-boronoethyl)-l-cysteine + 5 mM Nω-hydroxy-nor-l-arginine to inhibit arginase, and 4) 20 mM NG-nitro-l-arginine methyl ester (l-NAME) to inhibit NOS. Red cell flux was measured at each site by laser-Doppler flowmetry (LDF) as reflex vasodilation was induced. After a 1.0°C rise in oral temperature (Tor), mean body temperature was clamped and 20 mM l-NAME was perfused at each site. Cutaneous vascular conductance was calculated (CVC = LDF/mean arterial pressure) and expressed as a percentage of maximum (%CVCmax; 28 mM sodium nitroprusside and local heat, 43°C). Vasodilation was attenuated at the control site of the older subjects compared with young beginning at a 0.3°C rise in Tor. BH4 and arginase inhibition both increased vasodilation in older (BH4: 55 ± 5%; arginase-inhibited: 47 ± 5% vs. control: 37 ± 3%, both P < 0.01) but not young subjects compared with control (BH4: 51 ± 4%CVCmax; arginase-inhibited: 55 ± 4%CVCmax vs. control: 56 ± 6%CVCmax, both P > 0.05) at a 1°C rise in Tor. With a 1°C rise in Tor, local BH4 increased NO-dependent vasodilation in the older (BH4: 31.8 ± 2.4%CVCmax vs. control: 11.7 ± 2.0%CVCmax, P < 0.001) but not the young (BH4: 23 ± 4%CVCmax vs. control: 21 ± 4%CVCmax, P = 0.718) subject group. Together these data suggest that reduced BH4 contributes to attenuated vasodilation in aged human skin and that BH4 NOS coupling mechanisms may be a potential therapeutic target for increasing skin blood flow during hyperthermia in older humans.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3