Stimulation pulse characteristics and electrode configuration determine site of excitation in isolated mammalian skeletal muscle: implications for fatigue

Author:

Cairns Simeon P.,Chin Eva R.,Renaud Jean-Marc

Abstract

We examined whether electrical field stimulation with varying characteristics could excite isolated mammalian skeletal muscle through different sites. Supramaximal (20-V, 0.1-ms) pulse stimulation with transverse wire or parallel plate electrodes evoked similar forces in nonfatigued slow-twitch soleus and fast-twitch extensor digitorum longus (EDL) muscles from mice. d-tubocurarine shifted the twitch force-stimulation strength relationship toward higher pulse strengths with both electrode configurations in soleus muscle, suggesting that weaker pulses excite muscle via neuromuscular transmission. With wire stimulation, movement of the recording electrode along the muscle caused a delay between the stimulus artifact and the peak of the action potential, consistent with action potential propagation along the sarcolemma. TTX abolished all contractions evoked with 20-V, 0.1-ms pulses, suggesting that excitation occurred via voltage-dependent Na+ channels and, hence, muscle action potentials. TTX did not prevent force development with ≥0.4-ms pulses in soleus or 1-ms pulses in EDL muscle. Furthermore, myoplasmic Ca2+ (i.e., the fura 2 ratio) and sarcomere shortening were greater during tetanic stimulation with 2.0-ms than with 0.5-ms pulses in flexor digitorum brevis fibers from rats. TTX prevented all shortening and Ca2+ release with 0.5-ms, but not 2.0-ms, pulses, indicating that longer pulses can directly trigger Ca2+ release. Hence, proper interpretation of mechanistic studies requires precise understanding of how muscles are excited; otherwise, incorrect conclusions can be made. Using this new understanding, we showed that disrupted propagation of action potentials along the surface membrane is a major cause of fatigue in soleus muscle that is focally and continuously stimulated at 125 Hz.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3