Evidence for the involvement of CaMKII and AMPK in Ca2+-dependent signaling pathways regulating FA uptake and oxidation in contracting rodent muscle

Author:

Raney Marcella A.,Turcotte Lorraine P.

Abstract

Calcium-calmodulin/dependent protein kinase II (CaMKII), AMP-activated protein kinase (AMPK), and extracellular signal-regulated kinase (ERK1/2) have each been implicated in the regulation of substrate metabolism during exercise. The purpose of this study was to determine whether CaMKII is involved in the regulation of FA uptake and oxidation and, if it is involved, whether it does so independently of AMPK and ERK1/2. Rat hindquarters were perfused at rest with ( n = 16) or without ( n = 10) 3 mM caffeine, or during electrical stimulation ( n = 14). For each condition, rats were subdivided and treated with 10 μM of either KN92 or KN93, inactive and active CaMKII inhibitors, respectively. Both caffeine treatment and electrical stimulation significantly increased FA uptake and oxidation. KN93 abolished caffeine-induced FA uptake, decreased contraction-induced FA uptake by 33%, and abolished both caffeine- and contraction-induced FA oxidation ( P < 0.05). Caffeine had no effect on ERK1/2 phosphorylation ( P > 0.05) and increased α2-AMPK activity by 68% ( P < 0.05). Electrical stimulation increased ERK1/2 phosphorylation and α2-AMPK activity by 51% and 3.4-fold, respectively ( P < 0.05). KN93 had no effect on caffeine-induced α2-AMPK activity, ERK1/2 phosphorylation, or contraction-induced ERK1/2 phosphorylation ( P > 0.05). Alternatively, it decreased contraction-induced α2-AMPK activity by 51% ( P < 0.05), suggesting that CaMKII lies upstream of AMPK. These results demonstrate that regulation of contraction-induced FA uptake and oxidation occurs in part via Ca2+-independent activation of ERK1/2 as well as Ca2+-dependent activation of CaMKII and AMPK.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3