Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men

Author:

Fry Christopher S.1,Glynn Erin L.1,Drummond Micah J.123,Timmerman Kyle L.3,Fujita Satoshi4,Abe Takashi4,Dhanani Shaheen3,Volpi Elena53,Rasmussen Blake B.123

Affiliation:

1. Division of Rehabilitation Sciences,

2. Departments of 2Physical Therapy and

3. Sealy Center on Aging, University of Texas Medical Branch, Galveston, Texas; and

4. Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan

5. Internal Medicine,

Abstract

The loss of skeletal muscle mass during aging, sarcopenia, increases the risk for falls and dependence. Resistance exercise (RE) is an effective rehabilitation technique that can improve muscle mass and strength; however, older individuals are resistant to the stimulation of muscle protein synthesis (MPS) with traditional high-intensity RE. Recently, a novel rehabilitation exercise method, low-intensity RE, combined with blood flow restriction (BFR), has been shown to stimulate mammalian target of rapamycin complex 1 (mTORC1) signaling and MPS in young men. We hypothesized that low-intensity RE with BFR would be able to activate mTORC1 signaling and stimulate MPS in older men. We measured MPS and mTORC1-associated signaling proteins in seven older men (age 70 ± 2 yr) before and after exercise. Subjects were studied identically on two occasions: during BFR exercise [bilateral leg extension exercise at 20% of 1-repetition maximum (1-RM) with pressure cuff placed proximally on both thighs and inflated at 200 mmHg] and during exercise without the pressure cuff (Ctrl). MPS and phosphorylation of signaling proteins were determined on successive muscle biopsies by stable isotopic techniques and immunoblotting, respectively. MPS increased 56% from baseline after BFR exercise ( P < 0.05), while no change was observed in the Ctrl group ( P > 0.05). Downstream of mTORC1, ribosomal S6 kinase 1 (S6K1) phosphorylation and ribosomal protein S6 (rpS6) phosphorylation increased only in the BFR group after exercise ( P < 0.05). We conclude that low-intensity RE in combination with BFR enhances mTORC1 signaling and MPS in older men. BFR exercise is a novel intervention that may enhance muscle rehabilitation to counteract sarcopenia.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3