Contraction level-related modulation of corticomuscular coherence differs between the tibialis anterior and soleus muscles in humans

Author:

Ushiyama Junichi12,Masakado Yoshihisa3,Fujiwara Toshiyuki1,Tsuji Tetsuya1,Hase Kimitaka1,Kimura Akio4,Liu Meigen1,Ushiba Junichi145

Affiliation:

1. Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo;

2. Graduate School of Fundamental Science and Technology, Keio University, Kanagawa;

3. Department of Rehabilitation Medicine, Tokai University School of Medicine, Kanagawa;

4. Keio University Tsukigase Rehabilitation Center, Shizuoka; and

5. Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan

Abstract

The sensorimotor cortex activity measured by scalp EEG shows coherence with electromyogram (EMG) activity within the 15- to 35-Hz frequency band (β-band) during weak to moderate intensity of isometric voluntary contraction. This coupling is known to change its frequency band to the 35- to 60-Hz band (γ-band) during strong contraction. This study aimed to examine whether such contraction level-related modulation of corticomuscular coupling differs between muscles with different muscle compositions and functions. In 11 healthy young adults, we quantified the coherence between EEG over the sensorimotor cortex and rectified EMG during tonic isometric voluntary contraction at 10–70% of maximal voluntary contraction of the tibialis anterior (TA) and soleus (SOL) muscles, respectively. In the TA, the EEG-EMG coherence shifted from the β-band to the γ-band with increasing contraction level. Indeed, the magnitude of β-band EEG-EMG coherence was significantly decreased, whereas that of γ-band coherence was significantly increased, when the contraction level was above 60% of maximal voluntary contraction. In contrast to the TA, the SOL showed no such frequency changes of EEG-EMG coherence with alterations in the contraction levels. In other words, the maximal peak of EEG-EMG coherence in the SOL existed within the β-band, irrespective of the contraction levels. These findings suggest that the central nervous system regulates the frequency of corticomuscular coupling to exert the desired levels of muscle force and, notably, that the applicable rhythmicity of the coupling for performing strong contractions differs between muscles, depending on the physiological muscle compositions and functions of the contracting muscle.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3