Airway arginase expression and Nω-hydroxy-nor-arginine effect on methacholine-induced bronchoconstriction differentiate Lewis and Fischer rat strains

Author:

Risse Paul-André1,Lavoie-Lamoureux Anouk1,Jo Taisuke1,Tsuchiya Kimitake1,Siddiqui Sana1,Martin James G.1

Affiliation:

1. Meakins Christie Laboratories, McGill University, Montreal, Quebec, Canada

Abstract

Innate airway hyperresponsiveness (AHR) is well modeled by two strains of rat, the hyperresponsive Fischer 344 rat and the normoresponsive Lewis rat. Arginase has been implicated in AHR associated with allergic asthma models. We addressed the role of arginase in innate AHR using the Fischer-Lewis model. In vivo arginase inhibition with Nω-hydroxy-nor-arginine (nor-NOHA) was evaluated on methacholine-induced bronchoconstriction in the Fischer and the Lewis rats. Arginase activity and mRNA expression were quantified in structural and resident cells of the proximal airway tree. The effect of nor-NOHA was evaluated on cultured tracheal smooth muscle proliferation. Fischer rats exhibited significantly greater changes in respiratory resistance and elastance in response to methacholine compared with Lewis rats. nor-NOHA reduced the methacholine-induced bronchoconstriction in the central airways of Lewis rats, while it did not change the innate AHR of Fischer rats. Lewis rats exhibited greater arginase activity in tracheal smooth muscle but a lower proliferation rate compared with Fischer rats. Smooth muscle proliferation was not affected by nor-NOHA in either strain of rats. The strain-specific arginase expression in the smooth muscle may contribute to the differences in sensitivity of the methacholine challenged airways of Lewis and Fischer rats to inhibition of arginase.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3