Consequences of age-related splanchnic sequestration of leucine on interorgan glutamine metabolism in old rats

Author:

Jourdan Marion1,Deutz Nicolaas E. P.2,Cynober Luc13,Aussel Christian14

Affiliation:

1. Laboratory of Biological Nutrition, EA 4466, Paris Descartes University, Paris, France;

2. Department of Surgery, Maastricht University, Maastricht, The Netherlands;

3. Clinical Chemistry, Cochin and Hotel-Dieu Hospital, Paris, France; and

4. Nutrition Unit, Pharmacy, Henri-Mondor Hospital, Creteil, France

Abstract

Dietary leucine (Leu) serves as a nitrogen donor for de novo glutamine (Gln) synthesis in muscle. However, aging is characterized by an increase in the splanchnic extraction of Leu (SPELeu), i.e., splanchnic sequestration (SSLeu), which may affect muscle Gln metabolism and its subsequent homeostasis at the whole-body level. The aim of the work was to assess the effect of age-related SSLeu on Gln metabolism in the muscle, gut, liver, kidney, and Gln exchanges among these organs during fed conditions. Young-adult (3-mo-old) or aged (24-mo-old), male Sprague-Dawley rats were studied during fed condition [infusion of amino acids (AA) into the duodenum from time 0 min (T0) to T60] under anesthesia. L-[5-15N]Gln and L[1-13C]Leu were infused into the jugular vein and L-[5,5,5-2H3]Leu into the duodenum. At T60, blood samples were taken from carotid artery, portal vein, hepatic vein, renal vein, and inferior vena cava for tracer-tracee ratio and AA level measurements. SSLeu was observed in old rats and was negatively correlated with muscle Gln production ( r = −0.501, P < 0.01). In addition, reduced Gln muscle release in old rats was accompanied by reduced Gln uptake by the gut and kidney. However, net Gln balance across organs was not different between young adult and old rats. During fed conditions in old rats, muscle Gln production and release are reduced in relation to the observed, increased SPELeu and reduced renal and intestinal Gln uptake to maintain whole-body Gln homeostasis. Our results demonstrate the existence of an age-related change of interorgan Gln metabolism, which may be, in part, driven by SSLeu.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3