Acetazolamide prevents hypoxic pulmonary vasoconstriction in conscious dogs

Author:

Höhne Claudia,Krebs Martin O.,Seiferheld Manuela,Boemke Willehad,Kaczmarczyk Gabriele,Swenson Erik R.

Abstract

Acute hypoxia increases pulmonary arterial pressure and vascular resistance. Previous studies in isolated smooth muscle and perfused lungs have shown that carbonic anhydrase (CA) inhibition reduces the speed and magnitude of hypoxic pulmonary vasoconstriction (HPV). We studied whether CA inhibition by acetazolamide (Acz) is able to prevent HPV in the unanesthetized animal. Ten chronically tracheotomized, conscious dogs were investigated in three protocols. In all protocols, the dogs breathed 21% O2for the first hour and then 8 or 10% O2for the next 4 h spontaneously via a ventilator circuit. The protocols were as follows: protocol 1: controls given no Acz, inspired O2fraction (FiO2) = 0.10; protocol 2: Acz infused intravenously (250-mg bolus, followed by 167 μg·kg−1·min−1continuously), FiO2= 0.10; protocol 3: Acz given as above, but with FiO2reduced to 0.08 to match the arterial Po2(PaO2) observed during hypoxia in controls. PaO2was 37 Torr during hypoxia in controls, mean pulmonary arterial pressure increased from 17 ± 1 to 23 ± 1 mmHg, and pulmonary vascular resistance increased from 464 ± 26 to 679 ± 40 dyn·s−1·cm−5( P < 0.05). In both Acz groups, mean pulmonary arterial pressure was 15 ± 1 mmHg, and pulmonary vascular resistance ranged between 420 and 440 dyn·s−1·cm−5. These values did not change during hypoxia. In dogs given Acz at 10% O2, the arterial PaO2was 50 Torr owing to hyperventilation, whereas in those breathing 8% O2the PaO2was 37 Torr, equivalent to controls. In conclusion, Acz prevents HPV in conscious spontaneously breathing dogs. The effect is not due to Acz-induced hyperventilation and higher alveolar Po2, nor to changes in plasma endothelin-1, angiotensin-II, or potassium, and HPV suppression occurs despite the systemic acidosis with CA inhibition.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3