Contralateral muscle activity and fatigue in the human first dorsal interosseous muscle

Author:

Post Marijn,Bayrak Sibel,Kernell Daniel,Zijdewind Inge

Abstract

During effortful unilateral contractions, muscle activation is not limited to the target muscles but activity is also observed in contralateral muscles. The amount of this associated activity is depressed in a fatigued muscle, even after correction for fatigue-related changes in maximal force. In the present experiments, we aimed to compare fatigue-related changes in associated activity vs. parameters that are used as markers for changes in central nervous system (CNS) excitability. Subjects performed brief maximal voluntary contractions (MVCs) with the index finger in abduction direction before and after fatiguing protocols. We followed changes in MVCs, associated activity, motor-evoked potentials (MEP; transcranial magnetic stimulation), maximal compound muscle potentials (M waves), and superimposed twitches (double pulse) for 20 min after the fatiguing protocols. During the fatiguing protocols, associated activity increased in contralateral muscles, whereas afterwards the associated force was reduced in the fatigued muscle. This force reduction was significantly larger than the decline in MVC. However, associated activity (force and electromyography) remained depressed for only 5–10 min, whereas the MVCs stayed depressed for over 20 min. These decreases were accompanied by a reduction in MEP, MVC electromyography activity, and voluntary activation in the fatigued muscle. According to these latter markers, the decrease in CNS motor excitability lasted much longer than the depression in associated activity. Differential effects of fatigue on (associated) submaximal vs. maximal contractions might contribute to these differences in postfatigue behavior. However, we cannot exclude differences in processes that are specific to either voluntary or to associated contractions.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3