Influence of 90-day simulated microgravity on human tendon mechanical properties and the effect of resistive countermeasures

Author:

Reeves N. D.,Maganaris C. N.,Ferretti G.,Narici M. V.

Abstract

While microgravity exposure is known to cause deterioration of skeletal muscle performance, little is known regarding its effect on tendon structure and function. Hence, the aims of this study were to investigate the effects of simulated microgravity on the mechanical properties of human tendon and to assess the effectiveness of resistive countermeasures in preventing any detrimental effects. Eighteen men (aged 25–45 yr) underwent 90 days of bed rest: nine performed resistive exercise during this period (BREx group), and nine underwent bed rest only (BR group). Calf-raise and leg-press exercises were performed every third day using a gravity-independent flywheel device. Isometric plantar flexion contractions were performed by using a custom-built dynamometer, and ultrasound imaging was used to determine the tensile deformation of the gastrocnemius tendon during contraction. In the BR group, tendon stiffness estimated from the gradient of the tendon force-deformation relation decreased by 58% (preintervention: 124 ± 67 N/mm; postintervention: 52 ± 28 N/mm; P < 0.01), and the tendon Young's modulus decreased by 57% postintervention ( P < 0.01). In the BREx group, tendon stiffness decreased by 37% (preintervention: 136 ± 66 N/mm; postintervention: 86 ± 47 N/mm; P < 0.01), and the tendon Young's modulus decreased by 38% postintervention ( P < 0.01). The relative decline in tendon stiffness and Young's modulus was significantly ( P < 0.01) greater in the BR group compared with the BREx group. Unloading decreased gastrocnemius tendon stiffness due to a change in tendon material properties, and, although the exercise countermeasures did attenuate these effects, they did not completely prevent them. It is suggested that the total loading volume was not sufficient to completely prevent alterations in tendon mechanical properties.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 184 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3