Immersion before dry simulated dive reduces cardiomyocyte function and increases mortality after decompression

Author:

Gaustad Svein Erik1,Brubakk Alf O.1,Høydal Morten1,Catalucci Daniele23,Condorelli Gianluigi234,Dujic Zeljko5,Marinovic Jasna5,Ljubkovic Marko5,Møllerløkken Andreas1,Wisløff Ulrik16

Affiliation:

1. Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway;

2. Istitudo di Ricovero e Cura a Carattere Scientifico Multimedia, Scientific and Technology Pole, Milan, Italy;

3. Istitudo Tecnologie Biomediche (ITB)-Consiglio Nazionale delle Ricerche (CNR), Segrate, Milan, Italy;

4. Division of Cardiology, Department of Medicine, University of California San Diego, La Jolla, California;

5. Department of Physiology, University of Split School of Medicine, Split, Croatia

6. Centre for sports and physical activity research, NTNU, Trondheim, Norway; and

Abstract

Diving and decompression performed under immersed conditions have been shown to reduce cardiac function. The mechanisms for these changes are not known. The effect of immersion before a simulated hyperbaric dive on cardiomyocyte function was studied. Twenty-three rats were assigned to four groups: control, 1 h thermoneutral immersion, dry dive, and 1 h thermoneutral immersion before a dive (preimmersion dive). Rats exposed to a dive were compressed to 700 kPa, maintained for 45 min breathing air, and decompressed linearly to the surface at a rate of 50 kPa/min. Postdive, the animals were anesthetized and the right ventricle insonated for bubble detection using ultrasound. Isolation of cardiomyocytes from the left ventricle was performed and studied using an inverted fluorescence microscope with video-based sarcomere spacing. Compared with a dry dive, preimmersion dive significantly increased bubble production and decreased the survival time (bubble grade 1 vs. 5, and survival time 60 vs. 17 min, respectively). Preimmersion dive lead to 18% decreased cardiomyocyte shortening, 20% slower diastolic relengthening, and 22% higher calcium amplitudes compared with controls. The protein levels of the sarco-endoplasmic reticulum calcium ATPase (SERCA2a), Na+/Ca2+ exchanger (NCX), and phospholamban phosphorylation in the left ventricular tissue were significantly reduced after both dry and preimmersion dive compared with control and immersed animals. The data suggest that immersion before a dive results in impaired cardiomyocyte and Ca2+ handling and may be a cellular explanation to reduced cardiac function observed in humans after a dive.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3