Muscle shear elastic modulus measured using supersonic shear imaging is highly related to muscle activity level

Author:

Nordez Antoine1,Hug François1

Affiliation:

1. Laboratoire “Motricité, Interactions, Performance” (EA 4334), Université de Nantes, Nantes, France

Abstract

This pilot study was designed to determine whether the shear elastic modulus measured using supersonic shear imaging can be used to accurately estimate muscle activity level. Using direct visual feedback of torque, six healthy subjects were asked to perform two incremental isometric elbow flexions, consisting of linear torque ramps of 30 s from 0 to 40% of maximal voluntary contraction. Both electromyographic (EMG) activity and shear elastic modulus were continuously measured in the biceps brachii during the two ramps. There was significant linear regression ( P < 0.001) between shear elastic modulus and EMG activity level for both ramps of all six subjects ( R2 = 0.94 ± 0.05, ranging from 0.82 to 0.98). Good repeatability was found for shear elastic modulus estimated at both 3% ( trial 1: 21.7 ± 6.7 kPa; trial 2: 23.2 ± 7.2 kPa, intraclass correlation coefficient = 0.89, standard error in measurement = 2.3 kPa, coefficient of variation = 12.7%) and 7% ( trial 1: 42.6 ± 14.1 kPa; trial 2: 44.8 ± 15.8 kPa, intraclass correlation coefficient = 0.94, standard error in measurement = 3.7 kPa, coefficient of variation = 7.1%) of maximal EMG activity. The shear elastic modulus estimated at both 3 and 7% of maximal EMG activity was not significantly different ( P > 0.05) between the two trials. These results confirm our hypothesis that the use of supersonic shear imaging greatly improves the correlation between muscle shear elastic modulus and EMG activity level. Due to the nonlinearity of muscle mechanical properties, the muscle elasticity should be linked to the muscle stress. Therefore, the present study represents a first step in attempting to show that supersonic shear imaging can be used to indirectly estimate muscle stress.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3