Function of the canine inspiratory muscle pump in pleural effusion: influence of body position

Author:

Leduc Dimitri1,De Troyer André1

Affiliation:

1. Laboratory of Cardiorespiratory Physiology, Brussels School of Medicine, Brussels, and Chest Service, Erasme University Hospital, Brussels, Belgium

Abstract

Pleural effusion, a complicating feature of many diseases of the lung and pleura, adversely affects the pressure-generating capacity of the diaphragm in supine dogs. The objective of the present study was to assess the impact of body position on this effect and to evaluate the adaptation to effusion of the inspiratory muscle pump during breathing. Two experiments were performed. In the first, progressively increasing effusion was induced in anesthetized animals, and the changes in pleural (ΔPpl) and abdominal (ΔPab) pressure were measured during isolated phrenic nerve stimulation while the animals were placed in both the supine and the 45° head-up posture. In the second experiment, graded pleural effusion was also performed, and ΔPpl, ΔPab, and the electromyogram of the parasternal intercostal muscles were measured while the vagotomized animals were breathing spontaneously in the same two postures. The data showed that with effusion 1) ΔPpl during phrenic nerve stimulation was substantially lower with the animals in the head-up than in the supine posture; 2) this postural effect was primarily the result of the decrease in muscle length in the head-up posture; 3) during spontaneous breathing, however, parasternal intercostal inspiratory activity increased and ΔPpl remained unaltered while ΔPab decreased; and 4) the decrease in ΔPab and in the ΔPab/ΔPpl ratio was much larger in the head-up than in the supine posture. It is concluded that in the presence of pleural effusion, the pressure contribution of the inspiratory intercostal muscles during breathing increases and compensates for the shortening of the diaphragm, particularly in the upright posture.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3