Effect of 60° head-down tilt on peripheral gas mixing in the human lung

Author:

Olfert I. Mark1,Prisk G. Kim1

Affiliation:

1. Department of Medicine, Division of Physiology, University of California, San Diego, La Jolla, California 92093

Abstract

The phase III slope of sulfur hexafluoride (SF6) in a single-breath washout (SBW) is greater than that of helium (He) under normal gravity (i.e., 1G), thus resulting in a positive SF6-He slope difference. In microgravity (μG), SF6-He slope difference is smaller because of a greater fall in the phase III slope of SF6than He. We sought to determine whether increasing thoracic fluid volume using 60° head-down tilt (HDT) in 1G would produce a similar effect to μG on phase III slopes of SF6and He. Single-breath vital capacity (SBW) and multiple-breath washout (MBW) tests were performed before, during, and 60 min after 1 h of HDT. Compared with baseline (SF61.050 ± 0.182%/l, He 0.670 ± 0.172%/l), the SBW phase III slopes for both SF6and He tended to decrease during HDT, reaching nadir at 30 min (SF60.609 ± 0.211%/l, He 0.248 ± 0.138%/l; P = 0.08 and P = 0.06, respectively). In contrast to μG, the magnitude of the phase III slope decrease was similar for both SF6and He; therefore, no change in SF6-He slope difference was observed. MBW analysis revealed a decrease in normalized phase III slopes at all time points during HDT, for both SF6( P < 0.01) and He ( P < 0.01). This decrease was due to changes in the acinar, and not the conductive, component of the normalized phase III slope. These findings support the notion that changes in thoracic fluid volume alter ventilation distribution in the lung periphery but also demonstrate that the effect during HDT does not wholly mimic that observed in μG.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3