Aerobic exercise reduces neuronal responses in food reward brain regions

Author:

Evero Nero1,Hackett Laura C.1,Clark Robert D.1,Phelan Suzanne1,Hagobian Todd A.1

Affiliation:

1. Kinesiology Department, California Polytechnic State University, San Luis Obispo, California

Abstract

Acute exercise suppresses ad libitum energy intake, but little is known about the effects of exercise on food reward brain regions. After an overnight fast, 30 (17 men, 13 women), healthy, habitually active (age = 22.2 ± 0.7 yr, body mass index = 23.6 ± 0.4 kg/m2, V̇o2peak = 44.2 ± 1.5 ml·kg−1·min−1) individuals completed 60 min of exercise on a cycle ergometer or 60 min of rest (no-exercise) in a counterbalanced, crossover fashion. After each condition, blood oxygen level-dependent responses to high-energy food, low-energy food, and control visual cues, were measured by functional magnetic resonance imaging. Exercise, compared with no-exercise, significantly ( P < 0.005) reduced the neuronal response to food (high and low food) cues vs. control cues in the insula (−0.37 ± 0.13 vs. +0.07 ± 0.18%), putamen (−0.39 ± 0.10 vs. −0.10 ± 0.09%), and rolandic operculum (−0.37 ± 0.17 vs. 0.17 ± 0.12%). Exercise alone significantly ( P < 0.005) reduced the neuronal response to high food vs. control and low food vs. control cues in the inferior orbitofrontal cortex (−0.94 ± 0.33%), insula (−0.37 ± 0.13%), and putamen (−0.41 ± 0.10%). No-exercise alone significantly ( P < 0.005) reduced the neuronal response to high vs. control and low vs. control cues in the middle (−0.47 ± 0.15%) and inferior occipital gyrus (−1.00 ± 0.23%). Exercise reduced neuronal responses in brain regions consistent with reduced pleasure of food, reduced incentive motivation to eat, and reduced anticipation and consumption of food. Reduced neuronal response in these food reward brain regions after exercise is in line with the paradigm that acute exercise suppresses subsequent energy intake.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3