Cytochrome redox states and respiratory control in mouse and beef heart mitochondria at steady-state levels of hypoxia

Author:

Harrison David K.12,Fasching Mario1,Fontana-Ayoub Mona1,Gnaiger Erich13

Affiliation:

1. OROBOROS INSTRUMENTS, Innsbruck, Austria;

2. Microvascular Measurements, St Lorenzen, Italy; and

3. D Swarowski Research Laboratory, Department of Visceral Transplant and Thoracic Surgery, Medical University of Innsbruck, Austria

Abstract

Mitochondrial control of cellular redox states is a fundamental component of cell signaling in the coordination of core energy metabolism and homeostasis during normoxia and hypoxia. We investigated the relationship between cytochrome redox states and mitochondrial oxygen consumption at steady-state levels of hypoxia in mitochondria isolated from beef and mouse heart (BHImt, MHImt), comparing two species with different cardiac dynamics and local oxygen demands. A low-noise, rapid spectrophotometric system using visible light for the measurement of cytochrome redox states was combined with high-resolution respirometry. Monophasic hyperbolic relationships were observed between oxygen consumption, JO2, and oxygen partial pressure, Po2, within the range <1.1 kPa (8.3 mmHg; 13 μM). P50 j (Po2 at 0.5· Jmax) was 0.015 ± 0.0004 and 0.021 ± 0.003 kPa (0.11 and 0.16 mmHg) for BHImt and MHImt, respectively. Maximum oxygen consumption, Jmax, was measured at saturating ADP levels (OXPHOS capacity) with Complex I-linked substrate supply. Redox states of cytochromes aa3 and c were biphasic hyperbolic functions of Po2. The relationship between cytochrome oxidation state and oxygen consumption revealed a separation of distinct phases from mild to severe and deep hypoxia. When cytochrome c oxidation increased from fully reduced to 45% oxidized at 0.1 Jmax, Po2 was as low as 0.002 kPa (0.02 μM), and trace amounts of oxygen are sufficient to partially oxidize the cytochromes. At higher Po2 under severe hypoxia, respiration increases steeply, whereas redox changes are small. Under mild hypoxia, the steep slope of oxidation of cytochrome c when flux remains more stable represents a cushioning mechanism that helps to maintain respiration high at the onset of hypoxia.

Funder

Tyrolean Government and European Regional Development Fund

As Above

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3