High-altitude champions: birds that live and migrate at altitude

Author:

Laguë Sabine L.1

Affiliation:

1. University of British Columbia, Vancouver, Canada

Abstract

High altitude is physiologically challenging for vertebrate life for many reasons, including hypoxia (low environmental oxygen); yet, many birds thrive at altitude. Compared with mammals, birds have additional enhancements to their oxygen transport cascade, the conceptual series of steps responsible for acquiring oxygen from the environment and transporting it to the mitochondria. These adaptations have allowed them to inhabit a number of high-altitude regions. Waterfowl are a taxon prolific at altitude. This minireview explores the physiological responses of high-altitude waterfowl (geese and ducks), comparing the strategies of lifelong high-altitude residents to those of transient high-altitude performers, providing insight into how birds champion high-altitude life. In particular, this review highlights and contrasts the physiological hypoxia responses of bar-headed geese ( Anser indicus), birds that migrate biannually through the Himalayas (4,500–6,500 m), and Andean geese ( Chloephaga melanoptera), lifelong residents of the Andes (4,000–5,500 m). These two species exhibit markedly different ventilatory and cardiovascular strategies for coping with hypoxia: bar-headed geese robustly increase convective oxygen transport elements (i.e., heart rate and total ventilation) whereas Andean geese rely predominantly on enhancements that are likely morphological in origin (i.e., increases in lung oxygen diffusion and cardiac stroke volume). The minireview compares the short- and long-term cardiovascular and ventilatory trade-offs of these different physiological strategies and offers hypotheses surrounding their origins. It also draws parallels to high-altitude human physiology and research, and identifies a number of areas of further research. The field of high-altitude avian physiology offers a unique and broadly applicable insight into physiological enhancements in hypoxia.

Funder

NSERC

Killam Trusts (Fiducies Killam)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3