Ventilation-perfusion distribution in normal subjects

Author:

Beck Kenneth C.1,Johnson Bruce D.1,Olson Thomas P.1,Wilson Theodore A.2

Affiliation:

1. Department of Internal Medicine, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota; and

2. Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, Minnesota

Abstract

Functional values of LogSD of the ventilation distribution (σ) have been reported previously, but functional values of LogSD of the perfusion distribution (σ) and the coefficient of correlation between ventilation and perfusion (ρ) have not been measured in humans. Here, we report values for σ, σ, and ρ obtained from wash-in data for three gases, helium and two soluble gases, acetylene and dimethyl ether. Normal subjects inspired gas containing the test gases, and the concentrations of the gases at end-expiration during the first 10 breaths were measured with the subjects at rest and at increasing levels of exercise. The regional distribution of ventilation and perfusion was described by a bivariate log-normal distribution with parameters σ, σ, and ρ, and these parameters were evaluated by matching the values of expired gas concentrations calculated for this distribution to the measured values. Values of cardiac output and LogSD ventilation/perfusion (V̇a/Q̇) were obtained. At rest, σ is high (1.08 ± 0.12). With the onset of ventilation, σ decreases to 0.85 ± 0.09 but remains higher than σ (0.43 ± 0.09) at all exercise levels. Rho increases to 0.87 ± 0.07, and the value of LogSD V̇a/Q̇ for light and moderate exercise is primarily the result of the difference between the magnitudes of σ and σ. With known values for the parameters, the bivariate distribution describes the comprehensive distribution of ventilation and perfusion that underlies the distribution of the V̇a/Q̇ ratio.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3