Blocking β-adrenergic signaling attenuates reductions in circulating leptin, cancellous bone mass, and marrow adiposity seen with dietary energy restriction

Author:

Baek Kyunghwa12,Bloomfield Susan A.1

Affiliation:

1. Department of Health and Kinesiology and Intercollegiate Graduate Faculty of Nutrition, Texas A&M University, College Station, Texas; and

2. Department of Pharmacology, College of Dentistry, Gangneung-Wonju National University, Korea

Abstract

We tested whether β-adrenergic blockade attenuates bone loss and increased marrow adiposity during energy restriction (ER) and whether such an effect is associated with changes in serum leptin and leptin expression in bone and marrow tissues. Female 4-mo-old Sprague-Dawley rats were assigned into four groups ( n = 10 each): two groups of 40% ER treated with vehicle (ERVEH; saline) or β-blocker (ERBB; DL-propranolol; 250 μg·kg−1·h−1) during 12 wk, and two groups of ad libitum-fed controls treated with the same two agents (CONVEH, CONBB, respectively). Over 84 days, CONVEH and CONBB rats gained but ERVEH and ERBB rats lost body fat mass; lean mass did not change in any group. Reduction in serum leptin in ERVEH rats was mitigated in ERBB rats (−5.32 vs. −1.15 ng/ml, respectively). The decline in proximal tibia cancellous vBMD observed in ERVEH rats was attenuated in ERBB rats (−85.24 vs. −53.94 mg/cm3, respectively). Adipocyte number in ERVEH rats was dramatically higher vs. CON rats at week 12, but this increment was abolished by β-blockade in ERBB animals. The number of osteoblastic cells and marrow adipocytes staining positively for leptin in ERVEH rats tended to be lower vs. that of both CON groups, but β-blockade appears to reverse this effect in ERBB rats. In summary, β-adrenergic blockade mitigated metaphyseal bone loss and bone marrow adiposity during energy restriction and attenuated reductions in serum leptin. These data suggest an important role for β-adrenoreceptor signaling pathway in the cancellous bone and marrow fat response to energy restriction.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3