Skeletal muscle adaptations to testosterone and resistance training in men with COPD

Author:

Lewis Michael I.,Fournier Mario,Storer Thomas W.,Bhasin Shalender,Porszasz Janos,Ren Song-Guang,Da Xiaoyu,Casaburi Richard

Abstract

We recently reported increased leg lean mass and strength in men with chronic obstructive pulmonary disease (COPD) receiving 10 wk of testosterone (T) and leg resistance training (R) (Casaburi R, Bhasin S, Cosentino L, Porszasz J, Somfay A, Lewis M, Fournier M, Storer T. Am J Respir Crit Care Med 170: 870–878, 2004). The present study evaluates the role of muscle IGF and related factors as potential mechanisms for our findings, using quadriceps muscle biopsies from the same cohort. Patient groups were 1) weekly placebo (P) injections + no R; 2) P and R; 3) weekly injections of T + no R; and 4) T + R (TR). Muscle fibers were classified histochemically, and their cross-sectional areas (CSAs) and fiber density (number of fibers per unit area) were determined. Gene transcripts were determined by real-time PCR and protein expression by RIA. While no significant changes in fiber CSAs were noted across groups, increased trends were observed after 10 wk, and significant decrements in muscle fiber density were noted in all treated groups. A global increase in all myosin heavy chain (MyHC) mRNA isoforms was observed in TR patients. Muscle IGF-IEa and IGF-IEc mRNAs were significantly increased with TR group. Muscle IGF-I protein was increased in all intervention groups (greatest in TR). While TR IGF-II mRNA was increased, protein levels were unaltered. IGF binding protein-4 mRNA was increased with TR. Myogenin mRNA was increased in both T groups, while MyoD and myostatin were unchanged. Muscle atrophy F-box mRNA tended to increase with TR. Our data suggest that the combined interventions produced an enhanced local anabolic milieu driven in large part by the muscle IGF system, despite potentially negative biochemical influences present in COPD patients.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3