Validation of noninvasive photoacoustic measurements of sagittal sinus oxyhemoglobin saturation in hypoxic neonatal piglets

Author:

Kang Jeeun1ORCID,Boctor Emad M.1,Adams Shawn2,Kulikowicz Ewa2,Zhang Haichong K.1,Koehler Raymond C.2,Graham Ernest M.34

Affiliation:

1. Department of Radiology-Medical Imaging Physics, Johns Hopkins University School of Medicine, Baltimore, Maryland

2. Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland

3. Division of Maternal-Fetal Medicine, Department of Gynecology-Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland

4. Neuroscience Intensive Care Nursery Program, Johns Hopkins University School of Medicine, Baltimore, Maryland

Abstract

We hypothesize that noninvasive photoacoustic imaging can accurately measure cerebral venous oxyhemoglobin saturation (So2) in a neonatal model of hypoxia-ischemia. In neonatal piglets, which have a skull thickness comparable to that of human neonates, we compared the photoacoustic measurement of sagittal sinus So2 against that measured directly by blood sampling over a wide range of conditions. Systemic hypoxia was produced by decreasing inspired oxygen stepwise (i.e., 100, 21, 19, 17, 15, 14, 13, 12, 11, and 10%) with and without unilateral or bilateral ligation of the common carotid arteries to enhance hypoxia-ischemia. Transcranial photoacoustic sensing enabled us to detect changes in sagittal sinus O2 saturation throughout the tested range of 5–80% without physiologically relevant bias. Despite lower cortical perfusion and higher oxygen extraction in groups with carotid occlusion at equivalent inspired oxygen, photoacoustic measurements successfully provided a robust linear correlation that approached the line of identity with direct blood sample measurements. Receiver-operating characteristic analysis for discriminating So2 <30% showed an area under the curve of 0.84 for the pooled group data, and 0.87, 0.91, and 0.92 for hypoxia alone, hypoxia plus unilateral occlusion, and hypoxia plus bilateral occlusion subgroups, respectively. The detection precision in this critical range was confirmed with sensitivity (87.0%), specificity (86.5%), accuracy (86.8%), positive predictive value (90.5%), and negative predictive value (81.8%) in the combined dataset. These results validate the capability of photoacoustic sensing technology to accurately monitor sagittal sinus So2 noninvasively over a wide range and support its use for early detection of neonatal hypoxia-ischemia. NEW & NOTEWORTHY We present data to validate the noninvasive photoacoustic measurement of sagittal sinus oxyhemoglobin saturation. In particular, this paper demonstrates the robustness of this methodology during a wide range of hemodynamic and physiological changes induced by the stepwise decrease of fractional inspired oxygen to produce hypoxia and by unilateral and bilateral ligation of the common carotid arteries preceding hypoxia to produce hypoxia-ischemia. This technique may be useful for diagnosing risk of neonatal hypoxic-ischemic encephalopathy.

Funder

HHS | NIH | National Institute of Mental Health (NIMH)

HHS | NIH | National Heart, Lung, and Blood Institute (NHBLI)

Johns Hopkins University Discovery Award

Department of Anesthesiology and Critical Care Medicine Stimulating and Advancing ACCM Research (StAAR) Award

Johns Hopkins Institute for Clinical and Translational Research (ICTR)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3