The repeated-bout effect: influence on biceps brachii oxygenation and myoelectrical activity

Author:

Muthalib Makii12,Lee Hoseong13,Millet Guillaume Y.14,Ferrari Marco5,Nosaka Kazunori1

Affiliation:

1. School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia;

2. Institute of Health and Biomedical Innovation and School of Human Movement Studies, Queensland University of Technology, Brisbane, Queensland, Australia; and

3. Graduate School of Sport of Science, Dankook University, Choongnam, South Korea

4. Université de Lyon, and Exercise Physiology Laboratory, Jean Monnet University, Saint-Etienne, France;

5. Department of Health Sciences, University of L'Aquila, L'Aquila, Italy;

Abstract

This study investigated biceps brachii oxygenation and myoelectrical activity during and following maximal eccentric exercise to better understand the repeated-bout effect. Ten men performed two bouts of eccentric exercise (ECC1, ECC2), consisting of 10 sets of 6 maximal lengthening contractions of the elbow flexors separated by 4 wk. Tissue oxygenation index minimum amplitude (TOImin), mean and maximum total hemoglobin volume by near-infrared spectroscopy, torque, and surface electromyography root mean square (EMGRMS) during exercise were compared between ECC1 and ECC2. Changes in maximal voluntary isometric contraction (MVC) torque, range of motion, plasma creatine kinase activity, muscle soreness, TOImin, and EMGRMS during sustained (10-s) and 30-repeated isometric contraction tasks at 30% (same absolute force) and 100% MVC (same relative force) for 4 days postexercise were compared between ECC1 and ECC2. No significant differences between ECC1 and ECC2 were evident for changes in torque, TOImin, mean total hemoglobin volume, maximum total hemoglobin volume, and EMGRMS during exercise. Smaller ( P < 0.05) changes and faster recovery of muscle damage markers were evident following ECC2 than ECC1. During 30% MVC tasks, TOImin did not change, but EMGRMS increased 1–4 days following ECC1 and ECC2. During 100% MVC tasks, EMGRMS did not change, but torque and TOImin decreased 1–4 days following ECC1 and ECC2. TOImin during 100% MVC tasks and EMGRMS during 30% MVC tasks recovered faster ( P < 0.05) following ECC2 than ECC1. We conclude that the repeated-bout effect cannot be explained by altered muscle activation or metabolic/hemodynamic changes, and the faster recovery in muscle oxygenation and activation was mainly due to faster recovery of force.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3