Biphasic tissue Doppler waveforms during isovolumic phases are associated with asynchronous deformation of subendocardial and subepicardial layers

Author:

Sengupta Partho P.,Khandheria Bijoy K.,Korinek Josef,Wang Jianwen,Belohlavek Marek

Abstract

Subendocardial and subepicardial layers of the left ventricle (LV) are characterized with right- and left-handed helical orientations of myocardial fibers. We investigated the origin of biphasic deformations of the LV wall during isovolumic contraction (IVC) and relaxation (IVR). In eight open-chest adult pigs, strain rates were measured along the right- and left-handed helical directions in the LV anterior wall by implanting 16 sonomicrometry crystals. Sonomicrometry strain rates were compared with the longitudinal subendocardial strain rates obtained by tissue Doppler imaging. During ejection and diastolic filling, shortening and lengthening occurred synchronously along the right- and left-handed helical directions. However, during IVC and IVR, the deformations were dissimilar in the two directions. Transmural shortening during IVC occurred along the right-handed helical direction and was accompanied with transient lengthening in the left-handed helical direction. Conversely, during IVR, the LV lengthened along the left-handed helical direction and shortened in the right-handed helical direction. Peak subendocardial strain rates obtained by tissue Doppler imaging during IVC and IVR correlated with corresponding sonomicrometry strain rate values obtained along the right- and left-handed helical directions ( r = 0.81, P < 0.001 and r = 0.70, P = 0.001, respectively). Our data suggest that brief counterdirectional movements occur within the LV wall during IVC and IVR. Shortening along the right-handed helical direction is accompanied with reciprocal lengthening in the left-handed helical direction during IVC and vice versa during IVR. The results support an association between asynchronous deformation of subendocardial and subepicardial muscle fibers and the biphasic isovolumic movements observed with high-resolution tissue Doppler imaging.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3