Intramuscular triacylglycerol utilization in human skeletal muscle during exercise: is there a controversy?

Author:

Watt Matthew J.1,Heigenhauser George J. F.2,Spriet Lawrence L.1

Affiliation:

1. Department of Human Biology and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1; and

2. Department of Medicine, McMaster University, Hamilton, Ontario, Canada L8N 3Z5

Abstract

Intramuscular triacylglyerols (IMTGs) represent a potentially important energy source for contracting human skeletal muscle. Although the majority of evidence from isotope tracer and 1H-magnetic resonance spectroscopy (MRS) studies demonstrate IMTG utilization during exercise, controversy regarding the importance of IMTG as a metabolic substrate persists. The controversy stems from studies that measure IMTG in skeletal muscle biopsy samples and report no significant net IMTG degradation during prolonged moderate-intensity (55–70% maximal O2 consumption) exercise lasting 90–120 min. Although postexercise decrements in IMTG levels are often reported from direct muscle measurements, the marked between-biopsy variability (∼23%) that has been reported with this technique in untrained subjects is larger than the expected decrease in IMTG content, effectively precluding significant findings. In contrast, recent data obtained in endurance-trained subjects demonstrated reduced variability between duplicate biopsies (∼12%), and significant changes in IMTG were detected after 120 min of moderate-intensity exercise. Therefore, it is our contention that the muscle biopsy, isotope tracer, and 1H-MRS techniques report significant and energetically important oxidation of free fatty acids derived from IMTGs during prolonged moderate exercise.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 128 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3