Body-weight-support treadmill training improves blood glucose regulation in persons with incomplete spinal cord injury

Author:

Phillips Stuart M.,Stewart Brian G.,Mahoney Douglas J.,Hicks Audrey L.,McCartney Neil,Tang Jason E.,Wilkinson Sarah B.,Armstrong David,Tarnopolsky Mark A.

Abstract

The impact of a 6-mo body-weight-supported treadmill training program on glucose homeostasis and muscle metabolic characteristics was investigated. Nine individuals (31 ± 3 yr, 8.1 ± 2.5 yr postinjury; means ± SE) with incomplete spinal cord injury trained three times weekly for a total of 6 mo. Training session duration and intensity (velocity) increased by 54 ± 10% ( P < 0.01) and 135 ± 20%, respectively. Muscle biopsies and a modified glucose tolerance test (100 g glucose with [U-13C]glucose) were performed before (Pre) and after training (Post). Training resulted in a reduction in area under the curve of glucose × time (−15 ± 4%) and insulin × time (−33 ± 8%; both P < 0.05). Oxidation of exogenous (ingested) glucose increased as a result of training (Pre = 4.4 ± 0.7 g/h, Post = 7.4 ± 0.6 g/h; P < 0.05), as did oxidation of endogenous (liver) glucose (Pre = 3.8 ± 0.3 g/h, Post = 5.2 ± 0.3 g/h; P < 0.05). Training resulted in increased muscle glycogen (80 ± 23%; P < 0.05) and GLUT-4 content and hexokinase II enzyme activity (126 ± 34 and 49 ± 4%, respectively, both P < 0.01). Resting muscle phosphocreatine content also increased after training (Pre = 62.1 ± 4.3, Post = 78.7 ± 3.8, both mmol/kg dry wt and P < 0.05). Six months of thrice-weekly body-weight-supported treadmill training in persons with an incomplete spinal cord injury improved blood glucose regulation by increasing oxidation and storage of an oral glucose load. Increases in the capacity for transport and phosphorylation glucose in skeletal muscle likely play a role in these adaptations.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3